

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	airconics documentation

Welcome to the occ_airconics documentation!

[image: Transonic Airliner cover image]
occ_airconics implements a scripted aircraft geometry package for Python, powered by Open CASCADE [http://www.opencascade.com/] and PythonOCC [http://www.pythonocc.org/].

While the majority of detailed aircraft design is performed by expert users of high-level Computer Aided Drawing (CAD) software, the bottom-up construction philosophy ‘aircraft geometry as computer code’ has recently amassed interest in vehicle concept design and multidisciplinary optimisation. Primary aims of occ_airconics are to provide one such implementation through generic aircraft primitives, such as the Airfoil, LiftingSurface, Engine and Fuselage classes, with a view that they will be used in configuration-level geometry parametrisation and optimisation. An example of this functionality lies in the built-in transonic airliner model [https://github.com/p-chambers/occ_airconics/blob/master/examples/core/transonic_airliner.py], capable of producing a range of conventional geometries (see above) and a box-wing style aircraft.

One of the key advantages of occ_airconics is that it benefits from being built on the open-source full CAD kernel Open CASCADE [http://www.opencascade.com/] available through PythonOCC [http://www.pythonocc.org/], and therefore has access to an extensive and well-supported library of fast geometry manipulation tools including NURBS (Non-Uniform Rational B-Spline) curves and surfaces.

occ_airconics offers a fully cross platform and open source porting of core classes from the popular AirCONICS [https://aircraftgeometrycodes.wordpress.com/] (A ircraft CON figuration through I ntegrated C rossdisciplinary S cripting) plug-in for Rhinoceros 3D. Users of the original AirCONICS software should be aware however that the functionality of the original API has changed in occ_airconics to fit with the environments and ideologies of CPython and pythonocc. In particular, the base classes AirconicsShape and AirconicsCollection are added (see API reference [http://occ-airconics.readthedocs.io/en/latest/reference.html] for details).

Installation of occ_airconics requires a recent version of PythonOCC, and is compatible with the latest version, 0.17, available from the conda package - see Installation [http://occ-airconics.readthedocs.io/en/latest/installation.html] for more information.

Refer to the examples [http://occ-airconics.readthedocs.io/en/latest/examples.html] and API reference [http://occ-airconics.readthedocs.io/en/latest/reference.html] for a demonstration of the usage of occ_airconics. Contributions are welcome, and developers should refer to the Open CASCADE [http://www.opencascade.com/doc/occt-6.9.1/refman/html/index.html] and pythonocc [http://api.pythonocc.org/] API documentation for guidelines on manipulation of underlying geometry kernel.

Enjoy occ_airconics!

Contents:

	Examples
	Airfoil

	Transonic Airliner
	Parameter Definitions

	Wing, Transonic Airliner

	Tailplane, Transonic Airliner

	Fuselage Transonic Airliner

	Wing-Body Fairing:

	Engine + Pylon

	Miscelaneous operations

	Ipython Cell Renderer:

	Topology model
	Transonic Airliner Topology

	Predator UAV

	Fairchild Republic A-10 Thunderbolt

	Scaled Composites Proteus

	References

	Installation
	Conda packages

	Installation from source

	occ_airconics API reference
	airconics.base module

	Primitives

	LiftingSurface

	Fuselage

	Engine

	Topology

	AirCONICStools

	examples Subpackage

Acknowledgements

occ_airconics began as fork of AirCONICS [https://aircraftgeometrycodes.wordpress.com/], and therefore large parts of the code, documentation, examples and manual are attributed to the AirCONICS developers. For more detail on AirCONICS, please refer to the accompanying reference book or recent papers:

[1] Sobester, A. and Forrester, A. I. J., Aircraft Aerodynamic Design:
Geometry and Optimization, Wiley, 2014.

[2] Sobester, A., “Four Suggestions for Better Parametric Geometries,”
10th AIAA Multidisciplinary Design Optimization Conference,
AIAA SciTech, American Institute of Aeronautics and Astronautics,
jan 2014.

[3] Sobester, A., “Self-Designing Parametric Geometries,” 56th AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
SciTech, American Institute of Aeronautics and Astronautics, jan 2015.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	airconics documentation

Examples

Airfoil

This example on building an airfoil NURBS curve with occ_airconics is included in the occ_airconics core Qt viewer examples [https://github.com/p-chambers/occ_airconics/tree/master/examples/core].

First import the primitives module in which the Airfoil class is contained and the pythonocc-core Qt viewer:

from airconics import primitives
Visualisation with Python-OCC (ensure plot windows are set to qt)
from OCC.Display.SimpleGui import init_display
display, start_display, add_menu, add_function_to_menu = init_display()

Next, define the inputs to Airfoil class. In this example, we’ll use the SeligProfile type airfoil, leading edge point in origin, unit chord along x axis, no rotation around the x or y axes.

Note: This class also supports construction of NACA 4 digit profiles using input keyword NACA4Profile. See Airfoil API reference [http://occ-airconics.readthedocs.io/en/latest/reference.html#airconics.primitives.Airfoil].

LEPoint = [0., 0., 0.]
ChordLength = 1
Rotation = 0
Twist = 0
AirfoilSeligName = 'dae11'

Instantiate class to set up a generic airfoil with these basic parameters
Af = primitives.Airfoil(LEPoint, ChordLength, Rotation, Twist,
 SeligProfile=AirfoilSeligName)

Finally, display the curve and chord line

display.DisplayShape(Af.Curve, update=True)
display.DisplayShape(Af.ChordLine, update=True)
start_display()

[image: Airfoil curve and chordline]

Transonic Airliner

In this example, the transonic airliner geometry example from the Rhinoceros Airconics plugin [1] is shown. All renderings are static images here, but represent interactive renderings when run as an IPython notebook available here [https://github.com/p-chambers/occ_airconics/blob/master/examples/notebooks/notebook_examples.ipynb]. Interactive shapes can be viewed by clicking the shape hyperlinks however, as produced by the PythonOCC x3dom renderer.

For examples using the pythonocc-core Qt viewer, refer to the occ-airconics examples/core directory [https://github.com/p-chambers/occ_airconics/tree/master/examples/core]

from airconics import liftingsurface, engine, fuselage_oml
import airconics.AirCONICStools as act
from airconics.Addons.WebServer.TornadoWeb import TornadoWebRenderer
from IPython.display import display

Parameter Definitions

Parameters used here correspond to a geometry similar to that of the Boeing 787-8

Propulsion=1
EngineDia=2.9
FuselageScaling=[55.902, 55.902, 55.902]
WingScaleFactor=44.56
WingChordFactor=1.0
Topology=1
EngineSpanStation=0.31
EngineCtrBelowLE=0.3558
EngineCtrFwdOfLE=0.9837
Scarf_deg=3

Derived Parameters
FuselageHeight = FuselageScaling[2]*0.105
FuselageLength = FuselageScaling[0]
FuselageWidth = FuselageScaling[1]*0.106
WingApex = [0.1748*FuselageLength,0,-0.0523*FuselageHeight]
Fin:
FinChordFact = 1.01
FinScaleFact = WingScaleFactor/2.032
TailPlane
TPChordFact = 1.01
TPScaleFact = WingScaleFactor * 0.388
Engine:
NacelleLength = 1.95*EngineDia

Wing, Transonic Airliner

Formulation of lifting surfaces in occ_airconics (and AirCONICS) follows the suggestions in Sobester [2] in which geometry–attached curvilinear functionals are used instead of parameters for shape definition. That is, \(G(\bf{f}, \bf{X})\), where

$$\qquad \textbf{f} = \left[f_1(\textbf{X}_1), f_2(\textbf{X}_2), ... f_m(\textbf{X}_m)\right],$$
and

$$\textbf{X}_i = \left[x_1^i, x_2^i,...\right], \forall i = 1,...m$$

as opposed to the conventional \(G(\bf{X})\) formulation where the shape \(G\) changes in response to changes in design parameters \(\textbf{X}\). The functions \(f_i\) are defined by:

$$Sweep (\epsilon)$$

$$Chord (\epsilon)$$

$$Rotation (\epsilon)$$

$$Twist (\epsilon)$$

$$Airfoil (\epsilon)$$

where \(\epsilon\) represents the spanwise coordinate ranging from 0 at the root of the wing to 1 at the tip. Output of the airfoil function uses the airconics.primitives.Airfoil class here, which fits a NURBS curve to airfoil coordinates.

The following code demonstrates construction of a wing using built in examples for a transonic airliner wing and tailplane (below).

Import all example functional definitions for the Common Research Model (CRM) Wing:
from airconics.examples.wing_example_transonic_airliner import *

Position of the apex of the wing
P = WingApex

Class definition
NSeg = 11
ChordFactor = 1
ScaleFactor = 50

Generate (surface building is done during construction of the class)
Wing = liftingsurface.LiftingSurface(P, mySweepAngleFunctionAirliner,
 myDihedralFunctionAirliner,
 myTwistFunctionAirliner,
 myChordFunctionAirliner,
 myAirfoilFunctionAirliner,
 SegmentNo=NSeg,
 ScaleFactor=WingScaleFactor,
 ChordFactor=WingChordFactor)

Evaluate the root chord:
RootChord = Wing.RootChord

Display
renderer = TornadoWebRenderer()
Wing.Display(renderer)
display(renderer)

[image: occ airconics wing]

Interactive x3dom output

Tailplane, Transonic Airliner

The same Lifting Surface class is used here to generate the fin and tailplane of the aircraft, using a different set of input functionals (also defined in airconics.examples).

from OCC.gp import gp_Ax1, gp_Pnt, gp_Dir
from airconics.examples.tailplane_example_transonic_airliner import *

Position of the apex of the fin
P = [36.98-0.49-0.02, 0.0, 2.395-0.141]

SegmentNo = 10

Fin = liftingsurface.LiftingSurface(P, mySweepAngleFunctionFin,
 myDihedralFunctionFin,
 myTwistFunctionFin,
 myChordFunctionFin,
 myAirfoilFunctionFin,
 SegmentNo=SegmentNo,
 ChordFactor=FinChordFact,
 ScaleFactor=FinScaleFact)

Create the rotation axis centered at the apex point in the x direction
RotAxis = gp_Ax1(gp_Pnt(*P), gp_Dir(1, 0, 0))

Fin.RotateComponents(RotAxis, 90)

Position of the apex of the tailplane
P = [43, 0.000, 1.633+0.02]

SegmentNo = 100
ChordFactor = 1.01
ScaleFactor = 17.3

TP = liftingsurface.LiftingSurface(P, mySweepAngleFunctionTP,
 myDihedralFunctionTP,
 myTwistFunctionTP,
 myChordFunctionTP,
 myAirfoilFunctionTP,
 SegmentNo=SegmentNo,
 ChordFactor=TPChordFact,
 ScaleFactor=TPScaleFact)

Display
renderer = TornadoWebRenderer()
Fin.Display(renderer)
TP.Display(renderer)
display(renderer)

[image: occ_airconics fin and tailplane rendering]

Interactive x3dom Fin

Fuselage Transonic Airliner

Fuselage shapes are created following the parameterisation used in Sobester [3]. That is, the outer mould line (OML) is split into a Nose, Central and Tail section, the length of which is described on input to Fuselage class as a percentage of the total length. Rib curves are then formed by fitting a NURBS curve to the intersection points of sectional planar cuts and the guide curves of the extremeties of the OML e.g. Port, top and bottom curves. The OML is fitted in occ_airconics using the Open CASCADE ThruSections loft.

NoseLengthRatio=0.182
TailLengthRatio=0.293

Fus = fuselage_oml.Fuselage(NoseLengthRatio, TailLengthRatio,
 Scaling=FuselageScaling,
 NoseCoordinates=[0., 0., 0],
 CylindricalMidSection=False,
 Maxi_attempt=5)

Display
renderer = TornadoWebRenderer()
Fus.Display(renderer)
display(renderer)

('Surface fit attempt ', 1)
('Attempting thrusections surface fit with network density setup ', array([35, 30, 15, 5, 20]))
Network surface fit succesful on attempt 1

[image: occ_airconics Fuselage rendering]

Interactive x3dom Fuselage

Wing-Body Fairing:

The wing-body fairing is here created as a simple ellipsoid shape around the root section of the wing.

Note that this component will be displayed only in the final model.

WingBodyFairing: A simple ellipsoid:
from airconics.base import AirconicsShape
WTBFZ = RootChord*0.009 #787: 0.2
WTBFheight = 1.8*0.1212*RootChord #787:2.7
WTBFwidth = 1.08*FuselageWidth
WTBFXCentre = WingApex[0] + RootChord/2.0 + RootChord*0.1297 # 787: 23.8
WTBFlength = 1.167*RootChord #787:26

WBF_shape = act.make_ellipsoid([WTBFXCentre, 0, WTBFZ], WTBFlength, WTBFwidth, WTBFheight)
WBF = AirconicsShape(components={'WBF': WBF_shape})

Engine + Pylon

First, obtain the wing section and chord at which the engine will be fitted, then fit then engine. The default inputs to the Engine class produce a turbofan engine with Nacelle similar to that of the RR Trent 1000 / GEnx and its pylon (currently a flat plate only).

from airconics import engine

EngineSection, Chord = act.CutSect(Wing['Surface'], EngineSpanStation)
CEP = Chord.EndPoint()
Centreloc = [CEP.X()-EngineCtrFwdOfLE*NacelleLength,
 CEP.Y(),
 CEP.Z()-EngineCtrBelowLE*NacelleLength]

eng = engine.Engine(Chord,
 CentreLocation=Centreloc,
 ScarfAngle=Scarf_deg,
 HighlightRadius=EngineDia/2.0,
 MeanNacelleLength=NacelleLength)

Display
renderer = TornadoWebRenderer()
eng.Display(renderer)
display(renderer)

[image: occ_airconics Engine rendering]

Interactive x3dom Engine

Miscelaneous operations

Trim the inboard section of the main wing:
CutCirc = act.make_circle3pt([0,WTBFwidth/4.,-45], [0,WTBFwidth/4.,45], [90,WTBFwidth/4.,0])
CutCircDisk = act.PlanarSurf(CutCirc)
Wing['Surface'] = act.TrimShapebyPlane(Wing['Surface'], CutCircDisk)

#Mirror the main wing and tailplane using class methods:
Wing2 = Wing.MirrorComponents(plane='xz')
TP2 = TP.MirrorComponents(plane='xz')
eng2 = eng.MirrorComponents(plane='xz')

can work? True
error status: - Ok
Note: MirrorComponents currently mirrors only the shape
components, other attributes will not be mirrored

Note: MirrorComponents currently mirrors only the shape
components, other attributes will not be mirrored

Note: MirrorComponents currently mirrors only the shape
components, other attributes will not be mirrored

Ipython Cell Renderer:

Now render the finished airliner model:

from airconics.Addons.WebServer import TornadoWeb
renderer = TornadoWeb.TornadoWebRenderer()
display all entities:
Fuselage and wing-body fairing
Fus.Display(renderer)
WBF.Display(renderer)

#The Wings:
Wing.Display(renderer)
Wing2.Display(renderer)

#The Tailplane:
TP.Display(renderer)
TP2.Display(renderer)

#The Fin:
Fin.Display(renderer)

#The Engines:
eng.Display(renderer)
eng2.Display(renderer)

Finally show the renderer
display(renderer)

[image: occ_airconics Airliner rendering]

Interactive x3dom Airliner

Topology model

This is a work in progress towards a topologically flexible model based on the tree-type definition described in Sobester [1]. Note the geometry is not currently defined by the tree however, the tree is simply stored as a result of adding components - this is for demonstration only, and the process is yet to be automated.

Transonic Airliner Topology

First, we’ll try to add the previously created transonic airliner components to a Topology, including the number of descendant nodes that will be attached to each, and then display the resulting tree graph. The LISP representation of this tree could be described as

Fuselage(Fin, Mirror[(TailPlane, Wing(Engine))],

where opening brackets indicate that the following component is to be `atttached’ to the preceeding shape. Using the shorthand described in [1], this is equivalent to \(E(L, |L, L(P))\), where \(E\) is an enclosure/fuselage object, \(L\) is a lifting surface, \(|\) is a mirror plane and \(P\) is a propulsion unit [1]. Study the Airliner model above and recursively work through the components, starting from the fuselage, and think about the sub-components are attached to them to assert that this is true.

The \(xz\) mirror plane is included in this representation, between central objects (Fuselage, Fin) and the mirrored objects (Tail Plane, Wing, Engine). Notice that the dotted line box surrounds the entities that will be mirrored when Topology.Build() is called.

from airconics import Topology
from IPython.display import Image
import pydot

topo_renderer = TornadoWebRenderer()

topo = Topology()

Note: no checks are done on the validity of the tree yet,
topo.AddPart(Fus, 'Fuselage', 3)
topo.AddPart(Fin, 'Fin', 0)

Need to add a mirror plane here, arity zero
from OCC.gp import gp_Ax2, gp_Dir, gp_Pnt
xz_pln = gp_Ax2(gp_Pnt(0, 0, 0), gp_Dir(0, 1, 0))
topo.AddPart(xz_pln, 'Mirror', 0)

These are the mirrored entities, with their arities
topo.AddPart(TP, 'Tail Plane', 0)
topo.AddPart(Wing, 'Wing', 1)
topo.AddPart(eng, 'Engine', 0)

print the Topology (resembles a LISP tree)
print(topo)

Create the graph with pydot
graph = pydot.graph_from_dot_data(topo.export_graphviz())
Image(graph.create_png())

Skipping geometry construction for Topology
E(L, |L, L(P))

[image: png]

This line will mirror geometry 'under' (added after) the mirror plane
topo.Build()

topo.Display(topo_renderer)
display(topo_renderer)

<class 'OCC.gp.gp_Ax2'>
Note: MirrorComponents currently mirrors only the shape
components, other attributes will not be mirrored

Skipping geometry construction for AirconicsShape
<class 'OCC.gp.gp_Ax2'>
Note: MirrorComponents currently mirrors only the shape
components, other attributes will not be mirrored

Skipping geometry construction for AirconicsShape
<class 'OCC.gp.gp_Ax2'>
Note: MirrorComponents currently mirrors only the shape
components, other attributes will not be mirrored

Skipping geometry construction for AirconicsShape
Could not display shape type <class 'OCC.gp.gp_Ax2'>: skipping

[image: occ_airconics Airliner rendering]

Interactive x3dom Airliner

Let’s try some further tests to the topology class representation using some other examples. For now, these are empty geometries, and inputs to the Fuselage, LiftingSurface and Engine classes are not yet included in the Topology tree.

Predator UAV

[image: Predator UAV]
Photo source: US Air Force

Setup
Create mock components, without generating any geometry
fus = Fuselage(construct_geometry=False)
engine = Engine(construct_geometry=False)
fin = LiftingSurface(construct_geometry=False)
mirror_pln = gp_Ax2()
wing = LiftingSurface(construct_geometry=False)
Vfin = LiftingSurface(construct_geometry=False)

For now we must manually add parts and affinities
topo = Topology()
topo.AddPart(fus, 'Fuselage', 4)
topo.AddPart(engine, 'engine', 0)
topo.AddPart(fin, 'fin', 0)
topo.AddPart(mirror_pln, 'mirror_pln', 0)
topo.AddPart(wing, 'wing', 0)
topo.AddPart(Vfin, 'V-Fin', 0)

print(topo)

graph = pydot.graph_from_dot_data(topo.export_graphviz())
Image(graph.create_png())

Skipping geometry construction for Fuselage
No HChord specified to fit engine to: creating default
Skipping geometry construction for Engine
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Skipping geometry construction for Topology
E(P, L, |L, L)

[image: png]

Fairchild Republic A-10 Thunderbolt

[image: Tunderbolt aircraft]
Photo source: Airman Magazine 1999

Setup
Create mock components, without generating any geometry
fus = Fuselage(construct_geometry=False)
mirror_pln = gp_Ax2()
engine = Engine(construct_geometry=False)
wing = LiftingSurface(construct_geometry=False)
tailplane = LiftingSurface(construct_geometry=False)
tail_fin = LiftingSurface(construct_geometry=False)

topo = Topology()
topo.AddPart(fus, 'Fuselage', 3)
topo.AddPart(mirror_pln, 'mirror', 0)
topo.AddPart(engine, 'powerplant', 0)
topo.AddPart(tailplane, 'Tailplane', 1)
topo.AddPart(tail_fin, "Tail fin", 0)
topo.AddPart(wing, "wing", 0)

print(topo)

graph = pydot.graph_from_dot_data(topo.export_graphviz())
Image(graph.create_png())

Skipping geometry construction for Fuselage
No HChord specified to fit engine to: creating default
Skipping geometry construction for Engine
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Skipping geometry construction for Topology
E(|P, L(L), L)

[image: png]

Scaled Composites Proteus

[image: SC Proteus aircraft]
Photo source: NASA

Setup
Create mock components, without generating any geometry
fus = Fuselage(construct_geometry=False)
mirror_pln = gp_Ax2()
engine = Engine(construct_geometry=False)
wing_in = LiftingSurface(construct_geometry=False)
tailplane = LiftingSurface(construct_geometry=False)
pod = Fuselage(construct_geometry=False)
finup = LiftingSurface(construct_geometry=False)
findown = LiftingSurface(construct_geometry=False)
wing_out = LiftingSurface(construct_geometry=False)

topo = Topology()
topo.AddPart(fus, 'Fuselage', 3)
topo.AddPart(mirror_pln, 'mirror', 0)
topo.AddPart(engine, 'powerplant', 0)
topo.AddPart(wing, "wing", 0)
topo.AddPart(wing_in, "TP/inbbd wing", 1)
topo.AddPart(pod, 'Pod/tail boom', 3)
topo.AddPart(wing_out, "outbd wing", 0)
topo.AddPart(finup, "Fin (up)", 0)
topo.AddPart(findown, "Fin (down)", 0)

for node in topo._Tree:
 print(node)

graph = pydot.graph_from_dot_data(topo.export_graphviz())
Image(graph.create_png())

Skipping geometry construction for Fuselage
No HChord specified to fit engine to: creating default
Skipping geometry construction for Engine
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Skipping geometry construction for Fuselage
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Lifting Surface functional parameters not defined:
Initialising without geometry construction
Skipping geometry construction for LiftingSurface
Skipping geometry construction for Topology
(Fuselage, E, 3)
(mirror, |, 0)
(powerplant, P, 0)
(wing, L, 0)
(TP/inbbd wing, L, 1)
(Pod/tail boom, E, 3)
(outbd wing, L, 0)
(Fin (up), L, 0)
(Fin (down), L, 0)

[image: png]

References

[1] Sobester, A., “Four Suggestions for Better Parametric Geometries,”
10th AIAA Multidisciplinary Design Optimization Conference,
AIAA SciTech, American Institute of Aeronautics and Astronautics,
jan 2014.

[2] Sobester, A., “Self-Designing Parametric Geometries,” 56th AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
SciTech, American Institute of Aeronautics and Astronautics, jan 2015.

 Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	airconics documentation

Installation

occ_airconics accesses the powerful Open CASCADE [http://www.opencascade.com/] geometry kernel through the PythonOCC [http://www.pythonocc.org/] package. It is possible to build pythonocc-core [https://github.com/tpaviot/pythonocc-core] from source by following their installation instructions [https://github.com/tpaviot/pythonocc-core/blob/master/INSTALL.md], however a convenient and recommended alternative is to use the prebuilt conda packages suitable for win32/win64/osx64/linux64 users.

Note that occ_airconics is not currently available through PyPI.

Conda packages

pythonocc-core is listed as a dependency of occ_airconics, therefore users should simply add the appropriate conda channels to their ~/.condarc file:

conda config --add channels dlr-sc # the pythonocc-core channel

conda config --add channels prchambers # the occ_airconics channel

Or do this manually by editing their ~/.condarc contents, e.g.:

channels:
 - https://conda.anaconda.org/dlr-sc
 - https://conda.anaconda.org/prchambers
 - defaults

Then install occ_airconics via

conda install occ_airconics

And that’s it! pythonocc-core will be installed automatically.

Installation from source

Obtain and build a copy of pythonocc-core from GitHub [https://github.com/tpaviot/pythonocc-core] following their instructions.

Then clone occ_airconics from GitHub [https://github.com/p-chambers/occ_airconics] with:

git clone https://github.com/p-chambers/occ_airconics

And install with

cd occ_airconics
python setup.py install

Or

pip install occ_airconics

Developers should also add the develop flag, i.e.

python setup.py install develop

 Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	airconics documentation

occ_airconics API reference

airconics.base module

Base classes used by OCC_Airconics

Container classes (AirconicsBase, AirconicsShape, AirconicsCollection) which
behaves like a dictionary of sub component shapes/parts with some extended
functionality.

Created on Mon Apr 18 10:26:22 2016

@author: pchambers

	
class airconics.base.AirconicsBase(*args, **kwargs)

	Bases: _abcoll.MutableMapping, object

Base container class from which other base classes are derived from.
This is a an abstract base class and should not be used directly by users.

Notes

When properly defined in inherited functions, this class should behave like
a dictionary.

As this class inherits from MutableMapping, any class inherting from
AirconicsBase must also define the abstract methods of Mutable mapping,
i.e. __setitem__, __getitem__, __len__, __iter__, __delitem__

Methods

	Build(*args,**kwargs)
	

	Display(*args,**kwargs)
	

	Write(*args,**kwargs)
	

	clear(()->None.RemoveallitemsfromD.)
	

	get((k[,d])->D[k]ifkinD,...)
	

	items(()->listofD’s(key,value)pairs,...)
	

	iteritems(()->aniteratoroverthe(key,...)
	

	iterkeys(()->aniteratoroverthekeysofD)
	

	itervalues(...)
	

	keys(()->listofD’skeys)
	

	pop((k[,d])->v,...)
	If key is not found, d is returned if given, otherwise KeyError is raised.

	popitem(()->(k,v),...)
	as a 2-tuple; but raise KeyError if D is empty.

	setdefault((k[,d])->D.get(k,d),...)
	

	update(([E,...)
	If E present and has a .keys() method, does: for k in E: D[k] = E[k]

	values(()->listofD’svalues)
	

	
Build(*args, **kwargs)

	

	
Display(*args, **kwargs)

	

	
Write(*args, **kwargs)

	

	
class airconics.base.AirconicsCollection(parts={}, construct_geometry=False, *args, **kwargs)

	Bases: airconics.base.AirconicsBase

Base class from which collections of parts defined by other Airconics
classes will be stored.

AirconicsCollection represents a collection of ‘parts’
(i.e. AirconicsShapes’) which are logically grouped. For example, an
aircraft comprised of multiple parts (engine, lifting surfaces, fuselage)
all of which may contain sub ‘components’ and are therefore instances of
AirconicsShapes’

	Parameters:	parts : dictionary

(name: part) pairs, where name is a string for accessing the part,
and ‘part’ is an AirconicsShape derived class e.g. Fuselage,
LiftingSurface or Engine instance

See also

AirconicsShape

Notes

	Derived classes should call the AirconicsCollection init with

	super(DerivedClass, self).__init__(self, *args, **kwargs)

Attributes

	_Parts
	(Airconics Container) Mapping of name(string):component(AirconicsShape) pairs. Note that this should not be interacted with directly, and instead users should use assignment or the AddPart method: :Example: >>> a = AirconicsCollection() >>> a[‘name’] = part >>> #OR: a.AddPart(‘name’, part) This also supports mapping of attributes to parts, i.e: :Example: >>> a[‘name’] == a._Parts.name # returns True

Methods

	AddPart(part[,name])
	Adds a component to self

	Build()
	Does nothing for AirconicsCollection.

	Display(context[,material,color])
	Displays all Parts of the engine to input context

	Write(filename[,single_export])
	Writes the Parts contained in this instance to file specified by filename.

	clear(()->None.RemoveallitemsfromD.)
	

	get((k[,d])->D[k]ifkinD,...)
	

	items(()->listofD’s(key,value)pairs,...)
	

	iteritems(()->aniteratoroverthe(key,...)
	

	iterkeys(()->aniteratoroverthekeysofD)
	

	itervalues(...)
	

	keys(()->listofD’skeys)
	

	pop((k[,d])->v,...)
	If key is not found, d is returned if given, otherwise KeyError is raised.

	popitem(()->(k,v),...)
	as a 2-tuple; but raise KeyError if D is empty.

	setdefault((k[,d])->D.get(k,d),...)
	

	update(([E,...)
	If E present and has a .keys() method, does: for k in E: D[k] = E[k]

	values(()->listofD’svalues)
	

	
AddPart(part, name=None)

	Adds a component to self

	Parameters:	part : TopoDS_Shape

name : string

	
Build()

	Does nothing for AirconicsCollection.

This method allows AirconicsColection to be instantiated alone, as
Build is called in the __init__. ‘Build’ Should be redefined by all
derived classes.

Notes

	If Class.Build is not redefined in a derived class, confusion may

arise as no geometry will result from passing construct_geometry=True

	
Display(context, material=<Mock id='139945343027856'>, color=None)

	Displays all Parts of the engine to input context

	Parameters:	context : OCC.Display.OCCViewer.Viewer3d or WebRenderer

The display context - should have a Display or DisplayShape method

meterial : OCC.Graphic3d_NOM_* type

The material for display: note some renderers do not allow this

	
Write(filename, single_export=True)

	Writes the Parts contained in this instance to file specified by
filename.

One file is produced, unless single_export is False when one file
is written for each Part.

	filename : string

	the BASE.ext name of the file e.g. ‘airliner.stp’.
Note the part name will be prepended to the base name of each
output file

	single_export : bool

	returns a single output file if true, otherwise writes one file
per part

	Returns:	status : list

The flattened list of error codes returned by writing each part

See also

AirconicsBase

Notes

	Calls the .Write method belonging to each Part

	
class airconics.base.AirconicsShape(components={}, construct_geometry=False, *args, **kwargs)

	Bases: airconics.base.AirconicsBase

Base class from which airconics parts will be made.

AirconicsShapes represent a ‘part’ of an aircraft e.g. the engine, which
consists of a group of logically shape ‘components’ but with no relative
or relational contact information: class methods are intended to manipulate
the part as a whole.

This is intended as a base class, but can be used as a simple amorphic
collection of shape components.

	Example:	>>> shape = Airconics()
>>> shape['wing'] = wing # OR
>>> shape.AddComponent(wing, 'WingSurface')

	Parameters:	components : dictionary of components to be added as attributes

To add attributes directly. Values must be OCC.TopoDS.TopoDS_Shape

construct_geometry : bool

If true, Build method will be called on construction. Defaults to
False for AirconicsShape, as the Build method only prints. Derived
classes should pass construct_geometry=True if a Build method should
be called on construction

**kwargs : All other keyword arguments will be added as an attribute

to the resulting class calling super(subclass, self).__init__

See also

AirconicsCollection

Notes

	Derived classes should call the AirconicsCollection init with

	super(DerivedClass, self).__init__(self, *args, **kwargs)

Attributes

	_Components
	(Airconics Container) Mapping of name(string):component(TopoDS_Shape) pairs. Note that this should not be interacted with directly, and instead users should use assignment or the AddComponent method: :Example: >>> a = AirconicsShape() >>> a[‘name’] = shape >>> #OR: a.AddComponent(‘name’, shape) This also supports mapping of attributes to parts, i.e: :Example: >>> a[‘name’] == a._Components.name # returns True

Methods

	AddComponent(component[,name])
	Adds a component to self

	Build()
	Does nothing for AirconicsShape.

	Display(context[,material,color])
	Displays all components of this instance to input context

	DisplayBBox(display[,single])
	Displays the bounding box on input display.

	Extents([tol,as_vec])
	Returns the extents of the bounding box encapsulating all shapes in

	MirrorComponents([plane,axe2])
	Returns a mirrored version of this airconics shape

	PrintComponents()
	Lists the names of components in self

	RemoveComponent(name)
	Removes a named component from self

	RotateComponents(ax,deg)
	Rotation of each component in self._Components around ax by

	ScaleComponents_Uniformal(factor[,origin])
	General scaling and translation of components in self

	TransformComponents_Nonuniformal(scaling,vec)
	General scaling and translation of components in self

	TranslateComponents(vec)
	Apply translation by vec to each component in self

	Write(filename[,single_export])
	Writes the Components in this Airconics shape to filename using file format specified in extension of filename.

	clear(()->None.RemoveallitemsfromD.)
	

	get((k[,d])->D[k]ifkinD,...)
	

	items(()->listofD’s(key,value)pairs,...)
	

	iteritems(()->aniteratoroverthe(key,...)
	

	iterkeys(()->aniteratoroverthekeysofD)
	

	itervalues(...)
	

	keys(()->listofD’skeys)
	

	pop((k[,d])->v,...)
	If key is not found, d is returned if given, otherwise KeyError is raised.

	popitem(()->(k,v),...)
	as a 2-tuple; but raise KeyError if D is empty.

	setdefault((k[,d])->D.get(k,d),...)
	

	update(([E,...)
	If E present and has a .keys() method, does: for k in E: D[k] = E[k]

	values(()->listofD’svalues)
	

	
AddComponent(component, name=None)

	Adds a component to self

	Parameters:	component : TopoDS_Shape

name : string

	
Build()

	Does nothing for AirconicsShape.

This method allows AirconicsShape to be instantiated alone, as Build
is called in the __init__. ‘Build’ Should be redefined by all derived
classes

Notes

	If Class.Build is not redefined in a derived class, confusion may

arise as no geometry will result from passing construct_geometry=True

	
Display(context, material=<Mock id='139945343027856'>, color=None)

	Displays all components of this instance to input context

	Parameters:	context : OCC.Display.OCCViewer.Viewer3d or WebRenderer

The display context - should have a Display or DisplayShape method

meterial : OCC.Graphic3d_NOM_* type (default=ALUMINIUM)

The material for display: note some renderers do not allow this

color : string

The color for all components in this shape

	
DisplayBBox(display, single=True)

	Displays the bounding box on input display.

	Parameters:	display : OCC.Display.OCCViewer.Viewer3d

Note that this function only currently works with the OCC core
viewer as the bounding box is an AIS_Shape handle

single : bool (default True)

If false, separate bounding boxes will be draw for each component

	
Extents(tol=1e-06, as_vec=False)

	Returns the extents of the bounding box encapsulating all shapes in
self.__Components__

	Parameters:	tol : scalar (default 1e-6)

tolerance of the triangulation used in the bounding box extents

as_vec : bool (default True)

Returns two OCC.gp.gp_Vec objects if True

	Returns:	extents : tuple of scalar or OCC.gp.gp_Vec

Type depends on input ‘as_vec’. If as_vec is false, this returns
a tuple xmin, ymin, zmin, xmax, ymax, zmax; otherwise, the min and
max vectors will be returned as OCC types.

	
MirrorComponents(plane='xz', axe2=None)

	Returns a mirrored version of this airconics shape

	Parameters:	plane : string (default=’xz’)

The plane in which to mirror components

axe2 : OCC.gp.gp_Ax2

The axes through which to mirror (overwrites input ‘plane’)

	Returns:	mirrored : AirconicsShape

the mirrored shape

Notes

Due to problem with swig and deepcopy, the mirrored object is the
base class ‘AirconicsShape”, not the original type. This is will
remove other subclass-derived attributes and methods

It is also expected that the remaining attributes and methods will not
be required or meaningful after mirroring, however this behaviour
may change in future versions

	
PrintComponents()

	Lists the names of components in self

	
RemoveComponent(name)

	Removes a named component from self

	Parameters:	name : string

	
RotateComponents(ax, deg)

	Rotation of each component in self._Components around ax by
angle deg

	Parameters:	ax : OCC.gp.gp_Ax1

The axis of rotation

deg : scalar

Rotation in degrees

	
ScaleComponents_Uniformal(factor, origin=<Mock name='mock()' id='139945152045840'>)

	General scaling and translation of components in self
(applies act.transform_nonuniformal)

	Parameters:	origin : gp_Pnt

The origin of the scaling operation

factor : scalar

The scaling factor to apply in x,y,z

	
TransformComponents_Nonuniformal(scaling, vec)

	General scaling and translation of components in self
(applies act.transform_nonuniformal)

	Parameters:	scaling : list or array, length 3

[x, y, z] scaling factors

vec : List of x,y,z or gp_Vec

the translation vector (default is [0,0,0])

	
TranslateComponents(vec)

	Apply translation by vec to each component in self

	Parameters:	vec : OCC.gp.gp_vec

vector through which components will be translated

	
Write(filename, single_export=True)

	Writes the Components in this Airconics shape to filename using
file format specified in extension of filename.
Currently stl only (TODO: step, iges)

	Parameters:	filename : string

the BASE.ext name of the file e.g. ‘airliner.stp’.
Note the Component name will be prepended to the base name of each
output file

single_export : bool

Writes a single output file if true, otherwise writes one file
per component

	Returns:	status : list of int

error status of the file output of EACH component

Notes

File format is extracted from filename.

stl file write will prepend filename onto the Component name to be
written to file (cannot write multiple files)

Primitives

	
class airconics.primitives.Airfoil(LeadingEdgePoint=[0.0, 0.0, 0.0], ChordLength=1, Rotation=0, Twist=0, SeligProfile=None, Naca4Profile=None, Naca5Profile=None, CRMProfile=None, CRM_Epsilon=0.0, InterpProfile=None, Epsilon=0, Af1=None, Af2=None, Eps1=0, Eps2=1, EnforceSharpTE=False)

	Bases: object

Class for defining a range of spline-fitted airfoil curves

	Parameters:	LeadingEdgePoint : array of float (,3)

(x, y, z) origin of the airfoil LE

ChordLength : scalar

Length of the airfoil chord

Rotation : scalar

Angle (deg) at which the base airfoil is inclined (angle of attack,
rotation around y axis)

Twist : scalar

Angle (deg) at which the base airfoil is twisted
(dihedral, rotation around x axis)

SeligProfile : string

Name of the Selig airfoil: see
http://m-selig.ae.illinois.edu/ads/coord_database.html

NACA4Profile : string

Name of the airfoil in NACA 4 format

NACA5Profile : string

Name of the airfoil in NACA 5 format.
TODO: NACA5 profile not yet implemented

CRM_Profile : bool

If true, airfoil profile will be interpolated from Common Research
Model (CRM). Must also declare ‘CRMEpsilon’ variable.

CRM_Epsilon : float

Spanwise fraction between 0 and 1 to interpolate profile from CRM

InterpProfile : bool

If True, a set of points between Af1 and Af2 will be interpolated
for BSpline curve fitting (see AddInterp2)

Eps : scalar

Spanwise coordinate between Eps1 and Eps2 (used if InterpProfile is
True)

Af1 : airconics.Airfoil

The Airfoil located at spanwise location Eps1. Af1.x and Af1.z.
(used if InterpProfile is True)

Af2 : airconics.Airfoil

The Airfoil located at spanwise location Eps2.
(used if InterpProfile is True)

Eps1 : scalar

Spanwise coordinate location of Airfoil Af1. Expected to range from
0 (root of a lifting surface) to 1 (tip of a lifting surface)
(used if InterpProfile is True)

Eps2 : scalar

Spanwise coordinate location of Airfoil Af2. Expected to range from
0 (root of a lifting surface) to 1 (tip of a lifting surface), and
also expected to be greater than Eps1
(used if InterpProfile is True)

EnforceSharpTE : bool

Enforces sharp trailing edge (NACA airfoils only)

Notes

	NACA5 profiles are not yet supported in OCC_AirCONICS.

	Preference is that users allow the class constructor to handle
building the Airfoil i.e. pass all physical definitions as class
arguments.

	Although the physical attributes can changed i.e. rotation, twist,
ChordLength, LeadingEdgePoint etc., it is the users responsibility
to rebuild the Airfoil with the ‘Add***Airfoil’ afterwards

Attributes

	points
	(array of scalar, shape (N, 2)) The x-z coordinates of points on the airfoils surface

	Curve - OCC.Geom.Handle_Geom_BsplineCurve
	The generated airfoil spline

Methods

	AddAirfoilFromSeligFile
	

	AddCRMLinear
	

	AddLinear2
	

	AddNACA4
	

	
AddAirfoilFromSeligFile(SeligProfile, Smoothing=1)

	Adds an airfoil generated by fitting a NURBS curve to a set
of points whose coordinates are given in a Selig formatted file

	Parameters:	SeligProfile : string

base selig airfoil name e.g. ‘b707a’.

Smoothing : int (default=1)

TODO: Airfoil curve smoothing

	Returns:	None

Notes

See Selig database online for other available base names

	
AddCRMLinear(CRM_Epsilon, Smoothing=1)

	Linearly interpolate airfoil curve from CRM

	Parameters:	CRM_Epsilon : scalar

Spanwise coordinate at which to sample the CRM airfoil database
(range between 0 and 1)

Smoothing : int

TODO: Airfoil curve smoothing

	Returns:	None

	
AddLinear2(Eps, Af1, Af2, Eps1=0, Eps2=1)

	Interpolates the bspline control points fitted between two other
Airfoil objects.

Interpolates the x and z values of an Airfoil at spanwise location Eps
between Af1 (at Eps1) and Af2 (at Eps2). The BSpline Curve is then
fitted to the resulting points with Airfoil._fitAirfoiltoPoints, and
transformed to the orientation specified in self.Rotation, self.Twist,
self.ChordLength and self.LEPoint via the _TransformAirfoil function.

	Parameters:	Eps : scalar

Spanwise coordinate between Eps1 and Eps2

Af1 : airconics.Airfoil

The Airfoil located at spanwise location Eps1. Af1.x and Af1.z

Af2 : airconics.Airfoil

The Airfoil located at spanwise location Eps2.

Eps1 : scalar

Spanwise coordinate location of Airfoil Af1. Expected to range from
0 (root of a lifting surface) to 1 (tip of a lifting surface)

Eps2 : scalar

Spanwise coordinate location of Airfoil Af2. Expected to range from
0 (root of a lifting surface) to 1 (tip of a lifting surface), and
also expected to be greater than Eps1

	
AddNACA4(Naca4Profile, Smoothing=1)

	Adds a NACA 4 digit airfoil to the current document

	Parameters:	Naca4Profile : string

Naca 4 profile identifier. Should be length 4 string, however
also accepts negative camber i.e. ‘-5310’ gives a flipped
camber airfoil (primarily used for box wing)

Smoothing - int

TODO: fair airfoil curve

	Returns:	None

	
points

	

LiftingSurface

	
class airconics.liftingsurface.LiftingSurface(ApexPoint=<Mock name='mock()' id='139945152156176'>, SweepFunct=False, DihedralFunct=False, TwistFunct=False, ChordFunct=False, AirfoilFunct=False, ChordFactor=1, ScaleFactor=1, OptimizeChordScale=0, LooseSurf=1, SegmentNo=11, TipRequired=False, max_degree=8, continuity=<Mock id='139945152155728'>, construct_geometry=True)

	Bases: airconics.base.AirconicsShape

Airconics class for defining lifting surface shapes

	Parameters:	ApexPoint - array, length 3

Foremost point of the wing (x direction). Updating will rebuild the
geometry.

SweepFunct - function

function defining the leading edge sweep vs epsilon spanwise
variable coordinate between 0 and 1 (curvilinear attached
coordinates). Updating will rebuild the geometry.

DihedralFunct - function

function defining the leading edge dihedral vs epsilon spanwise
variable coordinate between 0 and 1 (curvilinear attached).
Updating will rebuild the geometry.

TwistFunc - function

function defining the sectional twist vs epsilon spanwise
variable coordinate between 0 and 1 (curvilinear attached).
Updating will rebuild the geometry.

ChordFunct - function

function defining the leading edge chord vs epsilon spanwise
variable coordinate between 0 and 1 (curvilinear attached)
Updating will rebuild the geometry.

AirfoilFunct - function

function defining the sectional Airfoil (see primitives.Airfoil)
vs epsilon spanwise variable coordinate between 0 and 1
(curvilinear attached).
Updating will rebuild the geometry.

ChordFactor - int (default = 1)

Scaling factor applied in chordwise direction. Updating will rebuild
the geometry.

ScaleFactor - int (default = 1)

Scaling factor applied in all directions (uniform). Updating will
rebuild the geometry.

OptimizeChordScale - int or bool (default = 0)

TODO: Not yet used.

LooseSurf - (default = 1)

TODO:

NSegments - int (default = 11)

Number of segments to sample the wing defined by input functions.
Updating will rebuild the geometry.

TipRequired - bool (default = False)

TODO: Not yet used
adds the wing tip face to components if true

max_degree - (default = 8)

maximum degree of the fitted NURBS surface

continuity - OCC.GeomAbs.GeomAbs_XX Type

the order of continuity i.e. C^0, C^1, C^2... would be
GeomAbs_C0, GeomAbs_C1, GeomAbs_C2 ...

construct_geometry : bool

If true, Build method will be called on construction

See also

airconics.primitives.Airfoil, airconics.examples.wing_example_transonic_airliner

Notes

	Output surface is stored in self[‘Surface’]

	

	See airconics.examples.wing_example_transonic_airliner for
example input functions

Attributes

	self[‘Surface’]
	(TopoDS_Shape) The generated lifting surface

	Sections
	(list of airconics.primitives.Airfoil objects) The rib curves from which the main surface is lofted. Updating any of the spanwise functions (ChordFunct, TwistFunct, etc...), SpanFactor, ChordFactor Raises an error if attempting to write over it manually.

	RootChord
	(Scalar) The length of the Root Chord. Updated by GenerateLiftingSurface

	AR
	(Scalar) The Aspect ratio of the Lifting Surface. Updated on call to Build

	LSP_area
	(Scalar) the projected area of the lifting surface. Updated on call to Build

	SA
	(Scalar) The wetted area of the lifting surface. Updated on call to Build

	ActualSemiSpan
	(Scalar) Calculated semi span of the lifting surface. Updated on call to Build

Methods

	AddComponent
	

	Build
	

	CalculateAspectRatio
	

	CalculateProjectedArea
	

	CalculateSemiSpan
	

	CreateConstructionGeometry
	

	Display
	

	DisplayBBox
	

	Extents
	

	Fit_BlendedTipDevice
	

	GenerateLeadingEdge
	

	GenerateLiftingSurface
	

	GenerateSectionCurves
	

	MirrorComponents
	

	PrintComponents
	

	RemoveComponent
	

	RotateComponents
	

	ScaleComponents_Uniformal
	

	TransformComponents_Nonuniformal
	

	TranslateComponents
	

	Write
	

	clear
	

	get
	

	items
	

	iteritems
	

	iterkeys
	

	itervalues
	

	keys
	

	pop
	

	popitem
	

	setdefault
	

	update
	

	values
	

	
AirfoilFunct

	

	
ApexPoint

	

	
Build()

	Builds the section curves and lifting surface using the current

Uses the current ChordFactor, ScaleFactor, NSegments, ApexPoint, and
all spanwise variation functions (e.g. ChordFunct) defined in self to
produce a surface

See also

airconics.examples.wing_example_transonic_airliner

Notes

Called on initialisation of a lifting surface class.

	Example:	>>> Wing = liftingsurface.LiftingSurface(P,
 mySweepAngleFunction,
 myDihedralFunction,
 myTwistFunction,
 myChordFunction,
 myAirfoilFunction)
>>> Surface = Wing['Surface']

	
CalculateAspectRatio()

	Calculates and returns the aspect ratio of this lifting surface

Uses information about the wings projected area and the current
bounding box. If the project area (LSP_Area) is zero, this will be
calculated.

	Returns:	AR : Scalar

Aspect ratio, calculated by b^2 / A, where b is the semi span and
A is the project area of this lifting surface

See also

airconics.LiftingSurface.ProjectedArea, airconics.LiftingSurface.SemiSpan

	
CalculateProjectedArea()

	Calculates the projected area of the current lifting surface

From Airconics documentation: In some cases the projected section
cannot all be lofted in one go (it happens when parts of the wing fold
back onto themselves), so we loft them section by section and compute
the area as a sum.

	
CalculateSemiSpan()

	Calculates and returns the span of this lifting surface.

Uses the OCC bounding box algorithm.

	Returns:	ActualSemiSpan : Scalar

	
ChordFactor

	

	
ChordFunct

	

	
CreateConstructionGeometry()

	Creates the plane and vector used for projecting wetted area

	
DihedralFunct

	

	
Fit_BlendedTipDevice(rootchord_norm, spanfraction=0.1, cant=40, transition=0.1, sweep=40, taper=0.7)

	Fits a blended wing tip device [1],

	Parameters:	rootchord_norm : scalar

The root chord of the straight part of the winglet, normalised by
the tip chord of this lifting surface.

spanfraction : scalar

span of the winglet normalised by the span of the main wing

cant : scalar (default 40)

Angle (deg) of the wing tip from vertical

transition : scalar

The percentage along the span at which the transition to a straight
segment is located

sweep : scalar

Sweep angle of the wing tip (uniform along the straight section)

taper : scalar

ratio of the tip chord to the root chord of the straight segment

References

[1] L. B. Gratzer, “Blended winglet,” Google Patents, 1994

	
GenerateLeadingEdge()

	Epsilon coordinate attached to leading edge defines sweep
Returns airfoil leading edge points

	
GenerateLiftingSurface()

	Builds a lifting surface (wing, tailplane, etc.) with the Chord and
Scale factors, and section list defined in self.

This function should be called after GenerateSectionCurves. Note that
both operations are performed with `Build’, which should be used
preferentially

	Returns:	None

Notes

Adds a (‘Surface’: Shape) key value pair to self.

	
GenerateSectionCurves()

	Generates the loft section curves based on the current
functional parameters and ChordFactor of the object.

Uses self._AirfoilFunct, _ChordFunct etc. and other attributes to
update the content of self._Sections.

	Returns:	None

	
NSegments

	

	
ScaleFactor

	

	
Sections

	

	
SweepFunct

	

	
TwistFunct

	

Fuselage

	
class airconics.fuselage_oml.Fuselage(NoseLengthRatio=0.182, TailLengthRatio=0.293, Scaling=[55.902, 55.902, 55.902], NoseCoordinates=[0.0, 0.0, 0], CylindricalMidSection=False, SimplificationReqd=False, Maxi_attempt=5, construct_geometry=True)

	Bases: airconics.base.AirconicsShape

AirCONICS Fuselage class: builds a parameterised instance of
an aircraft fuselage

	Parameters:	NoseLengthRatio : Scalar

The fraction of nose to fuselage length (default 0.182)

TailLengthRatio : Scalar

The fraction of tail to fuselage length (default 0.293)

Scaling : array, length 3

(x, y, z) scaling factor

NoseCoordinates : array of float

Location of nose apex

CylindricalMidSection : bool

If True, fuselage will have a cylindrical midsection

SimplificationReqd : bool

TODO

MaxFittingAtempts : integer

Maximum number of times to attempt to fit surface to guide curves

construct_geometry : bool

If true, Build method will be called on construction

Notes

Geometry building is done on initialisation of a Fuselage instance.
It is therefore not expected that users will do this through the
BuildFuselageOML function

Methods

	AddComponent
	

	AirlinerFuselagePlanView
	

	AirlinerFuselageSideView
	

	Build
	

	BuildFuselageOML
	

	CockpitWindowContours
	

	Display
	

	DisplayBBox
	

	Extents
	

	FuselageLongitudinalGuideCurves
	

	MakeWindow
	

	MirrorComponents
	

	PrintComponents
	

	RemoveComponent
	

	RotateComponents
	

	ScaleComponents_Uniformal
	

	TransformComponents_Nonuniformal
	

	TransformOML
	

	TranslateComponents
	

	WindowContour
	

	Write
	

	clear
	

	get
	

	items
	

	iteritems
	

	iterkeys
	

	itervalues
	

	keys
	

	pop
	

	popitem
	

	setdefault
	

	update
	

	values
	

	
AirlinerFuselagePlanView(NoseLengthRatio, TailLengthRatio)

	Internal function. Defines the control
polygons of the fuselage in side view

	
AirlinerFuselageSideView(NoseLengthRatio, TailLengthRatio)

	Internal function. Defines the control
polygons of the fuselage in side view

	
Build()

	Overrides the AirconicsShape empty Build method.

Calls BuildFuselageOML, which has been maintained for older versions.

	
BuildFuselageOML(Max_attempt=5)

	Builds the Fuselage outer mould line
Notes
—–
It is not expected that users will interact with this directly. Use
the Fuslage class initialisation fuction instead

	
CockpitWindowContours(Height=1.62, Depth=5)

	This function is currently not tested

	
FuselageLongitudinalGuideCurves(NoseLengthRatio, TailLengthRatio)

	Internal function. Defines the four longitudinal curves that outline
the fuselage (outer mould line).

	
MakeWindow(Xwc, Zwc)

	Makes at Window centered at Wxc Zwc using the bspline wire returned
by WindowContour

THIS FUNCTION IS IN DEVELOPMENT AND NOT YET TESTED FULLY

	Parameters:	Xwc : scalar

The window center x coordinate

Zwc : scalar

The window center z coordinate

	Returns:	WinStbd : TopoDS_Shape

The window surface cut out (starboard side)

WinPort : TopoDS_Shape

The window surface cut out (Port side)

Notes

Changes the contents of self[‘OML’].
Makes both the port and starboard windows at the input location.

	
TransformOML()

	Use parameters defined in self to scale and translate the fuselage

	
WindowContour(WinCenter)

	Creates and returns the contour of the window at WinCenter

	Parameters:	WinCenter : list or array, length 2

The [X, Z] coordinate of the center of the window

	Returns:	W_wire : TopoDS_Wire

The wire of the B-spline contour

Engine

	
class airconics.engine.Engine(HChord=0, CentreLocation=[0, 0, 0], ScarfAngle=3, HighlightRadius=1.45, MeanNacelleLength=5.67, construct_geometry=True)

	Bases: airconics.base.AirconicsShape

A class for generating aircraft engine and pylon geometries.

Currently only yields a turbofan engine with nacelle similar to that of an
RR Trent 1000 / GEnx. Shapes produced include the nacelle, spinner cone,
tail cone, Fan disk, Bypass disk, and pylon symmetry plane. The nacelle
is produced by inclining an inlet disk by its scarf angle about the span-
wise (y) axis and uniformly spacing airfoil ‘ribs’ before lofting a surface
through them. The pylon is currently the symetry plane of a fully pylon
only

	Parameters:	HChord : OCC.Geom.Handle_Geom_TrimmedCurve

The chord line at which the engine will be fitted. The result of
OCC.GC.GC_MakeSegment.Value() (can be return from helper function
CutSect from AirCONICStools).

CentreLocation : list, length 3 (default=[0,0,0])

Location of the centre of the inlet highlight disk

ScarfAngle : scalar, deg (default=3)

angle of inclination of engine intake (rotated around y axis)

HighlightRadius : scalar (default=1.45)

Intake highlight radius

MeanNacelleLength : scalar (default=5.67)

Mean length of the nacelle, to be used as the airfoil rib chordlength

construct_geometry : bool

If true, Build method will be called on construction

See also

airconics.base.AirconicsShape, airconics.primitives.Airfoil

Notes

	Also calls the initialiser of parent class AirconicsShape which stores
all keywords as attributes

Attributes

	_Components
	(dictionary of shapes)

Methods

	AddComponent
	

	Build
	

	BuildTurbofanNacelle
	

	Display
	

	DisplayBBox
	

	Extents
	

	MirrorComponents
	

	PrintComponents
	

	RemoveComponent
	

	RotateComponents
	

	ScaleComponents_Uniformal
	

	TransformComponents_Nonuniformal
	

	TranslateComponents
	

	Write
	

	clear
	

	get
	

	items
	

	iteritems
	

	iterkeys
	

	itervalues
	

	keys
	

	pop
	

	popitem
	

	setdefault
	

	update
	

	values
	

	
Build()

	Currently only calls BuildTurbofanNacelle.

Notes

May add options for other engine types

	
BuildTurbofanNacelle()

	The defaults yield a nacelle similar to that of an RR Trent 1000 / GEnx

#TODO: break this down into modular function calls

Topology

	
class airconics.topology.Topology(parts={}, construct_geometry=False)

	Bases: airconics.base.AirconicsCollection

Class to define abstract aircraft topologies as extensible lists
of lifting surfaces, enclosure, and propulsion type objects.

	Parameters:	parts - dictionary

	Should contain the following,

	{name: (Part, arity)}

	i.e. the string ‘name’ values are presented as a tuple or list of:

	
	Part - TopoDS_Shape

	The shape

	arity - int

	the arity (number of descendant nodes) attached to part

A warning is raised if arities are not provided, in which case
arity is assumed to be zero

Notes

	warning will be raised if no affinities are provided

	example:

	# (Wing is an airconics Lifting Surface instace):
aircraft = Topology(parts={‘Wing’: (Wing[‘Surface’], 2)})

Although not enforced, parts should be added to this class recursively
(from the top node first) to represent the aircraft’s flattened
topological tree suggested by Sobester [1]. It is the users
responsibility to ensure the input nodes are a valid lisp tree for a
correct graph to result (no checks are currently performed)

See Also: AirconicsCollection

References

	[1] Sobester, A., “Four Suggestions for Better Parametric Geometries,”

	10th AIAA Multidisciplinary Design Optimization Conference,
AIAA SciTech, American Institute of Aeronautics and Astronautics,
jan 2014.

Attributes

	_Tree - list
	the list of LISP-like instructions (in the order they were called with AddPart)

Methods

	AddPart
	

	Build
	

	Display
	

	MirrorSubtree
	

	Write
	

	clear
	

	export_graphviz
	

	get
	

	items
	

	iteritems
	

	iterkeys
	

	itervalues
	

	keys
	

	pop
	

	popitem
	

	setdefault
	

	update
	

	values
	

	
AddPart(part, name, arity=0)

	Overloads the AddPart method of AirconicsCollection base class
to append the arity of the input topology node

	Parameters:	part - LiftingSurface, Engine or Fuselage class instance

the part to be added to the tree

name - string

name of the part (will be used to look up this part in
self.aircraft)

arity - int

The number of terminals attached to this part; this will be
randomized at a later stage

Notes

This method is expected to be used recursively, therefore
the order in which parts are added dictates the tree topology.
The first item added will be the top of the tree.

See also: AirconicsCollection.AddPart

	
Build()

	Recursively builds all sub components in the current topology tree
if self.construct_geometry is true. Will also mirror components
if a mirror node has been added, regardless of if construct_geometry
is true.

Uses the the Build method of all sub components. Any user defined
classes must therefore define the Build method in order for this to
work correctly.

	
MirrorSubtree()

	Mirrors the geometry where required, based on the current topology
tree.

Does nothing is no mirror plane has been added

	
export_graphviz()

	Returns a string, Graphviz script for visualizing the topology tree.

Currently only set up to allow a single mirror terminal

	Returns:	output : string

The Graphviz script to plot the tree representation of the program.

Notes

This function is originally from GPLearns _Program class, but has been
modified. Can be visualised with pydot,

	Example:	>>> topo = Topology() # Add some parts with topo.addPart
>>> graph = pydot.graph_from_dot_data(topo.export_graphviz())
>>> Image(graph.create_png())

May add a dependency on GPLearn later and overload the appropriate
class methods.

AirCONICStools

Various geometry operations of geometric pythonocc primitives for OCC_AirCONICS

Created on Fri Dec 4 11:58:52 2015

@author: pchambers

	
airconics.AirCONICStools.AddCone(BasePoint, Radius, height, direction=<Mock name='mock()' id='139945155695376'>)

	Generates a cone shape originating at BasePoint with base Radius
and height (points in the direction of input ‘direction)

	Parameters:	BasePoint : OCC.gp.gp_Pnt or array length 3

The centre base point

Radius : scalar

Cone base radius

height : scalar

Cone height

direction : OCC.gp.gp_Dir (default: positive x direction)

the direction of the cones axis i.e. normal to the base:
defaults to x axis

	Returns:	shape : TopoDS_Shape

The generated Cone

	
airconics.AirCONICStools.AddSurfaceLoft(objs, continuity=<Mock id='139945342646160'>, check_compatibility=True, solid=True, first_vertex=None, last_vertex=None, max_degree=8, close_sections=True)

	Create a lift surface through curve objects

	Parameters:	objs : list of python classes

Each obj is expected to have an obj.Curve attribute :
see airconics.primitives.airfoil class

continuity : OCC.GeomAbs.GeomAbs_XX type (default C2)

The order of continuity (C^0, C^1, C^2, G^0,)

check_compatibility : bool (default=True)

Adds a surface compatibility check to the builder

solid : bool (default=True)

Creates a solid object from the loft if True

first_vertex : TopoDS_Vertex (optional, default=None)

The starting vertex of the surface to add to the ‘ThruSections’
algorithm

last_vertex : TopoDS_Vertex (optional, default=None)

The end vertex of the surface to add to the ‘ThruSections’
algorithm

max_degree : int (default=8)

The order of the fitted NURBS surface

close_sections : bool (default=True):

Connects the start and end point of the loft rib curves if true. This
has the same effect as adding an airfoil trailing edge.

	Returns:	shape : TopoDS_Shape

The generated loft surface

Notes

Uses OCC.BRepOffsetAPI.BRepOffsetAPI_ThruSections. This function is
ORDER DEPENDANT, i.e. add elements in the order through which they should
be lofted

	
airconics.AirCONICStools.BBox_FromExtents(xmin, ymin, zmin, xmax, ymax, zmax)

	Generates the Wire Edges defining the Bounding Box defined in the input
arguments: Can be used to display the bounding box

	
airconics.AirCONICStools.CalculateSurfaceArea(shape)

	Calculates the surface area of input shape

	Parameters:	shape : TopoDS_Shape

	Returns:	Area : scalar

Calculated surface area

	
airconics.AirCONICStools.CutSect(Shape, SpanStation)

	

	Parameters:	Shape : TopoDS_Shape

The Shape to find planar cut section (parallel to xz plane)

SpanStation : scalar in range (0, 1)

y-direction location at which to cut Shape

	Returns:	Section : result of OCC.BRepAlgoAPI.BRepAlgoAPI_Section (TopoDS_Shape)

The cut section of shape given a cut plane parallel to xz at input
Spanstation.

Chord : result of OCC.GC.GC_MakeSegment.Value (Geom_TrimmedCurve)

The Chord line between x direction extremeties

	
airconics.AirCONICStools.ExtrudeFace(face, vec=<Mock name='mock()' id='139945342688464'>)

	Extrudes a face by input vector

	Parameters:	face : TopoDS_Face

vec : OCC.gp.gp_Vec

The offset vector to extrude through

	Returns:	shape : TopoDS_Shape

The extruded shape

Notes

Uses BRepBuilderAPI_MakePrism

	
airconics.AirCONICStools.FilletFaceCorners(face, radius)

	Fillets the corners of the input face

	Parameters:	face : TopoDS_Face

radius : the Fillet radius

	
airconics.AirCONICStools.Generate_InterpFunction(Values, EpsArray=None, uniform=True)

	Generates a lookup interpolation function.

Given an array of spanwise coordinates epsilon along a curvilinear
leading-edge attached coordinate system, and a set of values describing
e.g. Chord, Sweep at each station, generate and return a function
f(epsilon) which will give the interpolated value.

	Parameters:	Values : array of float

Values of e.g. chordlength, sweep at each spanwise location in EpsArray

EpsArray : array of float

Distribution of spanwise coordinates at which the Values are known

uniform : bool

If True, assumes that Values corresponds to uniformly distribution
epsilon locations along the lifting surface span

	Returns:	f : function

the function which returns the interpolated epsilon

	
airconics.AirCONICStools.ObjectsExtents(breps, tol=1e-06, as_vec=False)

	Compute the extents in the X, Y and Z direction (in the current
coordinate system) of the objects listed in the argument.

	Parameters:	breps : list of TopoDS_Shape

The shapes to be added for bounding box calculation

tol : float (default=1e-6)

Tolerance for bounding box calculation

as_vec : bool (default=False)

If true, returns minimum and maximum points as tuple of gp_Vec

	Returns:	xmin, ymin, zmin, xmax, ymax, zmax : scalar

the min and max points of bbox (returned if as_vec=False)

(gp_Vec(xmin, ymin, zmin), gp_Vec(xmax, ymax, zmax)) : tuple of gp_Vec

the min and max points of bbox (returned in as_vec=True)

Notes

Due to the underlying OCC.Bnd.Bnd_Box functions, the bounding box is
calculated via triangulation of the shapes to avoid inclusion of the
control points of NURBS curves in bounding box calculation

	
airconics.AirCONICStools.PlanarSurf(geomcurve)

	Adds a planar surface to curve

	Parameters:	geomcurve : OCC.Geom type curve

The edge of the profile

	Returns:	surf : TopoDS_face

the planar surface

	
airconics.AirCONICStools.SplitShapeFromProjection(shape, wire, direction, return_section=True)

	Splits shape by the projection of wire onto its face

	Parameters:	shape : TopoDS_Shape

the brep to subtract from

wire : TopoDS_Wire

the tool to use for projection and splitting

direction: OCC.gp.gp_Dir

the direction to project the wire

return_section : bool

returns the split shape

	Returns:	newshape : TopoDS_Shape

input shape with wire subtracted

section : the shape which was substracted

(returned only if return_section is true)

Notes

Currently assumes splits the first face only

	
airconics.AirCONICStools.TrimShapebyPlane(Shape, Plane, pnt=<Mock name='mock()' id='139945152505104'>)

	Trims an OCC shape by plane. Default trims the negative y side of the
plane

	Parameters:	Shape : TopoDS_Shape

Plane : expect TopoDS_Face

pnt : point defining which side of the halfspace contains its mass

	
airconics.AirCONICStools.Uniform_Points_on_Curve(curve, NPoints)

	Returns a list of uniformly spaced points on a curve

	Parameters:	crv : OCC.Geom curve type

NPoints : int

number of sampling points along the curve

	
class airconics.AirCONICStools.assert_isdone(to_check, error_statement)

	Bases: object

raises an assertion error when IsDone() returns false, with the error
specified in error_statement
-> this is from the pythonocc-utils utility-may not use it?

	
airconics.AirCONICStools.boolean_cut(shapeToCutFrom, cuttingShape, debug=False)

	Boolean cut tool from PythonOCC-Utils

	
airconics.AirCONICStools.coerce_handle(obj)

	coerces an object that has a GetHandle method to call this method and
return its handle

	
airconics.AirCONICStools.coslin(TransitionPoint, NCosPoints=24, NLinPoints=24)

	Creates a series of abscissas with cosine spacing from 0 to a
TransitionPoint and a linear spacing thereafter, up to 1. The
TransitionPoint corresponds to pi. Distribution suitable for airfoils
defined by points. TransitionPoint must be in the range [0,1].

	Parameters:	TransitionPoint : scalar

Point to transition from cosine to linear distribution in range (0, 1)

NCosPoints : int

Number of points to space by cosine law between 0 and TransitionPoint

NLinPoints : int

Number of points to space by linear law between TransitionPoint and 1

	Returns:	Abscissa : numpy array

The generated abscissa

NCosPoints : int

Number of cosine points used (same as input)

	
airconics.AirCONICStools.export_STEPFile(shapes, filename)

	Exports a .stp file containing the input shapes

	Parameters:	shapes : list of TopoDS_Shape

Shapes to write to file

filename : string

The output filename

	
airconics.AirCONICStools.export_STEPFile_Airconics(AirconicsShapes, filename)

	Writes a Step file with names defined in the AirconicsShapes. This
function is not fully tested and should not yet be used.

Notes

Work in progress

	
airconics.AirCONICStools.make_circle3pt(pt1, pt2, pt3)

	Makes a circle allowing python lists as input points

	
airconics.AirCONICStools.make_edge(*args)

	

	
airconics.AirCONICStools.make_ellipsoid(centre_pt, dx, dy, dz)

	Creates an ellipsoid from non-uniformly scaled unit sphere

	
airconics.AirCONICStools.make_face(*args)

	

	
airconics.AirCONICStools.make_pipe_shell(spine, profiles, support=None)

	

	
airconics.AirCONICStools.make_vertex(*args)

	

	
airconics.AirCONICStools.make_wire(*args)

	

	
airconics.AirCONICStools.mirror(brep, plane='xz', axe2=None, copy=False)

	Originally from pythonocc-utils : might add dependency on this?
Mirrors object

	Parameters:	brep : OCC.TopoDS.TopoDS_Shape

The shape to mirror

plane : string (default = ‘xz’)

The name of the plane in which to mirror objects. Acceptable inputs are
any of ‘xy’, ‘yx’ , ‘zy’, ‘yz’, ‘yz’, ‘zy’. Overwritten if axe2 is
defined.

axe2 : OCC.gp.gp_Ax2

The axes through which to mirror (overwrites input ‘plane’)

copy : bool

	Returns:	BRepBuilderAPI_Transform.Shape : TopoDS_Shape

The reflected shape

Notes

Pchambers: Added a functionality here to specify a plane using a string so
that users could avoid interacting with core occ objects

	
airconics.AirCONICStools.point_array_to_TColgp_PntArrayType(array, _type=<Mock id='139945343088912'>)

	Function to return curve from numpy array

	Parameters:	array : array (Npts x 3) or list

Array of xyz points for which to fit a bspline

_type : type of TColgp array

	Tested inputs are,

	
	TColgp_Array1OfPnt

	TColgp_HArray1OfPnt

See Notes for more information

	Returns:	pt_arr : TCOLgp_Array1OfPnt

OCC type array of points

Notes

USe TColgp_Harray when interpolating a curve from points with the
GeomAPI_Interpolate. Use TColgp_Array when interpolating a curve
from points with the GeomAPI_PointsToBspline

	
airconics.AirCONICStools.points_from_intersection(plane, curve)

	Find intersection points between plane and curve.

	Parameters:	plane : Geom_Plane

The Plane

curve : Geom_*Curve

The Curve

	Returns:	P : Point or list of points

A single intersection point (OCC.gp.gp_Pnt) if one intersection is
found, or list of points if more than one is found.

	If No Intersection points were found, returns None

Notes

The plane is first converted to a surface As the GeomAPI_IntCS class
requires this.

	
airconics.AirCONICStools.points_to_BezierCurve(pnts)

	Creates a Bezier curve from an array of points.

	Parameters:	pnts : array or list

x, y, z for an array of points. Allowable inputs are numpy arrays
(with dimensions (Npoints x 3)), python list with elements [xi, yi, zi]
or list of OCC.gp.gp_Pnt objects

	Returns:	crv : OCC.Geom.Geom_BezierCurve

	
airconics.AirCONICStools.points_to_bspline(pnts, deg=3, periodic=False, tangents=None, scale=False, continuity=<Mock id='139945342646160'>)

	Points to bspline: originally from pythonocc-utils, changed to allow numpy
arrays as input

	Returns:	crv : OCC.Geom.BSplineCurve

	
airconics.AirCONICStools.project_curve_to_plane(curve, plane, direction)

	Computes and returns the cylindrically projected curve onto input plane

	Parameters:	curve - geom_Curve

plane - Geom_Plane

dir - gp_Dir (default None)

The cylindrical projection direction. If None, the project will be
normal to the plane

	Returns:	Hproj_curve : Handle_Geom_Curve

	
airconics.AirCONICStools.project_curve_to_surface(curve, surface, dir)

	Returns a curve as cylindrically projected onto the surface shape

	Parameters:	curve : Geom_curve or TopoDS_Edge/Wire

surface : TopoDS_Shape

dir : gp_Dir

the direction of projection

	Returns:	res_curve : geom_curve (bspline only?)

	
airconics.AirCONICStools.rotate(brep, axe, degree, copy=False)

	Rotates the brep

Originally from pythonocc-utils : might add dependency on this?

	Parameters:	brep : shape to rotate

axe : axis of rotation

degree : Number of degrees to rotate through

copy : bool (default=False)

	Returns:	BRepBuilderAPI_Transform.Shape : Shape handle

The handle to the rotated shape

	
airconics.AirCONICStools.scale_uniformal(brep, pnt, factor, copy=False)

	translate a brep over a vector : from pythonocc-utils

	
airconics.AirCONICStools.transform_nonuniformal(brep, factors, vec=[0, 0, 0], copy=False)

	Nonuniformly scale brep with respect to pnt by the x y z scaling factors
provided in ‘factors’, and translate by vector ‘vec’

	Parameters:	factors : List of factors [Fx, Fy, Fz]

Scaling factors with respect to origin (0,0,0)

vec : List of x,y,z or gp_Vec

the translation vector (default is [0,0,0])

Notes

	Only tested on 3d shapes

	Assumes factors are define with respect to the origin (0,0,0)

	
airconics.AirCONICStools.translate_topods_from_vector(brep_or_iterable, vec, copy=False)

	Function Originally from pythonocc-utils, modified to work on objects

translates a brep over a vector

	Parameters:	brep : the Topo_DS to translate

vec : the vector defining the translation

copy : copies to brep if True

examples Subpackage

Modules in this subpackage are to be used for reconstructing example
Airconics shapes, e.g. the transonic airliner lifting surface functions.

Created on Mon Jan 4 17:28:37 2016

Example script for generating a transonic airliner wing external geometry.

@author: pchambers

	
airconics.examples.wing_example_transonic_airliner.myAirfoilFunctionAirliner(Epsilon, LEPoint, ChordFunct, ChordFactor, DihedralFunct, TwistFunct)

	Defines the variation of cross section as a function of Epsilon

	
airconics.examples.wing_example_transonic_airliner.myChordFunctionAirliner(Epsilon)

	User-defined function describing the variation of chord as a function of
the leading edge coordinate

	
airconics.examples.wing_example_transonic_airliner.myDihedralFunctionAirliner(Epsilon)

	User-defined function describing the variation of dihedral as a function
of the leading edge coordinate

	
airconics.examples.wing_example_transonic_airliner.mySweepAngleFunctionAirliner(Epsilon)

	User-defined function describing the variation of sweep angle as a function
of the leading edge coordinate

	
airconics.examples.wing_example_transonic_airliner.myTwistFunctionAirliner(Epsilon)

	User-defined function describing the variation of twist as a function
of the leading edge coordinate. The coefficients of the polynomial below
come from the following twist values taken off the CRM (used for the AIAA
drag prediction workshops):
Epsilon = 0: twist = 4.24
Epsilon =0.3: twist = 0.593
Epsilon = 1: twist = -3.343

Created on Fri Jan 15 11:39:16 2016

Example functions for generating the lifting surfaces for the tail of a
transport aircraft (fin and tailplane external geometry). Also, this shows
that a specific planform can be reconstructed (the tail planform geometry
here is an approximation of the B787 tail geometry).

==
AirCONICS
Aircraft CONfiguration through Integrated Cross-disciplinary Scripting
version 0.2
Andras Sobester, 2015.
Bug reports to a.sobester@soton.ac.uk or @ASobester please.
==

@author: pchambers

	
airconics.examples.tailplane_example_transonic_airliner.myAirfoilFunctionFin(Epsilon, LEPoint, ChordFunct, ChordFactor, DihedralFunct, TwistFunct)

	Defines the variation of cross section as a function of Epsilon

	
airconics.examples.tailplane_example_transonic_airliner.myAirfoilFunctionTP(Epsilon, LEPoint, ChordFunct, ChordFactor, DihedralFunct, TwistFunct)

	Defines the variation of cross section as a function of Epsilon

	
airconics.examples.tailplane_example_transonic_airliner.myChordFunctionFin(Epsilon)

	User-defined function describing the variation of the fin chord as a
function of the leading edge coordinate

	
airconics.examples.tailplane_example_transonic_airliner.myChordFunctionTP(Epsilon)

	User-defined function describing the variation of the tailplane chord as
a function of the leading edge coordinate

	
airconics.examples.tailplane_example_transonic_airliner.myDihedralFunctionFin(Epsilon)

	

	
airconics.examples.tailplane_example_transonic_airliner.myDihedralFunctionTP(Epsilon)

	

	
airconics.examples.tailplane_example_transonic_airliner.mySweepAngleFunctionFin(Epsilon)

	User-defined function describing the variation of the fin sweep angle as
a function of the leading edge coordinate

	
airconics.examples.tailplane_example_transonic_airliner.mySweepAngleFunctionTP(Epsilon)

	User-defined function describing the variation of the fin sweep angle as
a function of the leading edge coordinate

	
airconics.examples.tailplane_example_transonic_airliner.myTwistFunctionFin(Epsilon)

	

	
airconics.examples.tailplane_example_transonic_airliner.myTwistFunctionTP(Epsilon)

	

Created on Fri Mar 11 11:36:51 2016

@author: pchambers

	
airconics.examples.boxwing.myAirfoilFunctionBoxWing(Epsilon, LEPoint, ChordFunct, ChordFactor, DihedralFunct, TwistFunct)

	

	
airconics.examples.boxwing.myChordFunctionBoxWing(Epsilon)

	

	
airconics.examples.boxwing.myDihedralFunctionBoxWing(Epsilon)

	User-defined function describing the variation of dihedral as a function
of the leading edge coordinate
Notes
—–
Could also use numpy vectorize in this function

	
airconics.examples.boxwing.mySweepAngleFunctionBoxWing(Epsilon)

	

	
airconics.examples.boxwing.myTwistFunctionBoxWing(Epsilon)

	

 Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	airconics documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 airconics	

 	
 	
 airconics.AirCONICStools	

 	
 	
 airconics.base	

 	
 	
 airconics.examples.boxwing	

 	
 	
 airconics.examples.tailplane_example_transonic_airliner	

 	
 	
 airconics.examples.wing_example_transonic_airliner	

 Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	airconics documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	AddAirfoilFromSeligFile() (airconics.primitives.Airfoil method)

 	AddComponent() (airconics.base.AirconicsShape method)

 	AddCone() (in module airconics.AirCONICStools)

 	AddCRMLinear() (airconics.primitives.Airfoil method)

 	AddLinear2() (airconics.primitives.Airfoil method)

 	AddNACA4() (airconics.primitives.Airfoil method)

 	AddPart() (airconics.base.AirconicsCollection method)

 	

 	(airconics.topology.Topology method)

 	AddSurfaceLoft() (in module airconics.AirCONICStools)

 	airconics.AirCONICStools (module)

 	airconics.base (module)

 	airconics.examples.boxwing (module)

 	

 	airconics.examples.tailplane_example_transonic_airliner (module)

 	airconics.examples.wing_example_transonic_airliner (module)

 	AirconicsBase (class in airconics.base)

 	AirconicsCollection (class in airconics.base)

 	AirconicsShape (class in airconics.base)

 	Airfoil (class in airconics.primitives)

 	AirfoilFunct (airconics.liftingsurface.LiftingSurface attribute)

 	AirlinerFuselagePlanView() (airconics.fuselage_oml.Fuselage method)

 	AirlinerFuselageSideView() (airconics.fuselage_oml.Fuselage method)

 	ApexPoint (airconics.liftingsurface.LiftingSurface attribute)

 	assert_isdone (class in airconics.AirCONICStools)

B

 	

 	BBox_FromExtents() (in module airconics.AirCONICStools)

 	boolean_cut() (in module airconics.AirCONICStools)

 	Build() (airconics.base.AirconicsBase method)

 	

 	(airconics.base.AirconicsCollection method)

 	(airconics.base.AirconicsShape method)

 	(airconics.engine.Engine method)

 	(airconics.fuselage_oml.Fuselage method)

 	(airconics.liftingsurface.LiftingSurface method)

 	(airconics.topology.Topology method)

 	

 	BuildFuselageOML() (airconics.fuselage_oml.Fuselage method)

 	BuildTurbofanNacelle() (airconics.engine.Engine method)

C

 	

 	CalculateAspectRatio() (airconics.liftingsurface.LiftingSurface method)

 	CalculateProjectedArea() (airconics.liftingsurface.LiftingSurface method)

 	CalculateSemiSpan() (airconics.liftingsurface.LiftingSurface method)

 	CalculateSurfaceArea() (in module airconics.AirCONICStools)

 	ChordFactor (airconics.liftingsurface.LiftingSurface attribute)

 	ChordFunct (airconics.liftingsurface.LiftingSurface attribute)

 	

 	CockpitWindowContours() (airconics.fuselage_oml.Fuselage method)

 	coerce_handle() (in module airconics.AirCONICStools)

 	coslin() (in module airconics.AirCONICStools)

 	CreateConstructionGeometry() (airconics.liftingsurface.LiftingSurface method)

 	CutSect() (in module airconics.AirCONICStools)

D

 	

 	DihedralFunct (airconics.liftingsurface.LiftingSurface attribute)

 	Display() (airconics.base.AirconicsBase method)

 	

 	(airconics.base.AirconicsCollection method)

 	(airconics.base.AirconicsShape method)

 	

 	DisplayBBox() (airconics.base.AirconicsShape method)

E

 	

 	Engine (class in airconics.engine)

 	export_graphviz() (airconics.topology.Topology method)

 	export_STEPFile() (in module airconics.AirCONICStools)

 	

 	export_STEPFile_Airconics() (in module airconics.AirCONICStools)

 	Extents() (airconics.base.AirconicsShape method)

 	ExtrudeFace() (in module airconics.AirCONICStools)

F

 	

 	FilletFaceCorners() (in module airconics.AirCONICStools)

 	Fit_BlendedTipDevice() (airconics.liftingsurface.LiftingSurface method)

 	

 	Fuselage (class in airconics.fuselage_oml)

 	FuselageLongitudinalGuideCurves() (airconics.fuselage_oml.Fuselage method)

G

 	

 	Generate_InterpFunction() (in module airconics.AirCONICStools)

 	GenerateLeadingEdge() (airconics.liftingsurface.LiftingSurface method)

 	

 	GenerateLiftingSurface() (airconics.liftingsurface.LiftingSurface method)

 	GenerateSectionCurves() (airconics.liftingsurface.LiftingSurface method)

L

 	

 	LiftingSurface (class in airconics.liftingsurface)

M

 	

 	make_circle3pt() (in module airconics.AirCONICStools)

 	make_edge() (in module airconics.AirCONICStools)

 	make_ellipsoid() (in module airconics.AirCONICStools)

 	make_face() (in module airconics.AirCONICStools)

 	make_pipe_shell() (in module airconics.AirCONICStools)

 	make_vertex() (in module airconics.AirCONICStools)

 	make_wire() (in module airconics.AirCONICStools)

 	MakeWindow() (airconics.fuselage_oml.Fuselage method)

 	mirror() (in module airconics.AirCONICStools)

 	MirrorComponents() (airconics.base.AirconicsShape method)

 	MirrorSubtree() (airconics.topology.Topology method)

 	myAirfoilFunctionAirliner() (in module airconics.examples.wing_example_transonic_airliner)

 	myAirfoilFunctionBoxWing() (in module airconics.examples.boxwing)

 	myAirfoilFunctionFin() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myAirfoilFunctionTP() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myChordFunctionAirliner() (in module airconics.examples.wing_example_transonic_airliner)

 	

 	myChordFunctionBoxWing() (in module airconics.examples.boxwing)

 	myChordFunctionFin() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myChordFunctionTP() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myDihedralFunctionAirliner() (in module airconics.examples.wing_example_transonic_airliner)

 	myDihedralFunctionBoxWing() (in module airconics.examples.boxwing)

 	myDihedralFunctionFin() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myDihedralFunctionTP() (in module airconics.examples.tailplane_example_transonic_airliner)

 	mySweepAngleFunctionAirliner() (in module airconics.examples.wing_example_transonic_airliner)

 	mySweepAngleFunctionBoxWing() (in module airconics.examples.boxwing)

 	mySweepAngleFunctionFin() (in module airconics.examples.tailplane_example_transonic_airliner)

 	mySweepAngleFunctionTP() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myTwistFunctionAirliner() (in module airconics.examples.wing_example_transonic_airliner)

 	myTwistFunctionBoxWing() (in module airconics.examples.boxwing)

 	myTwistFunctionFin() (in module airconics.examples.tailplane_example_transonic_airliner)

 	myTwistFunctionTP() (in module airconics.examples.tailplane_example_transonic_airliner)

N

 	

 	NSegments (airconics.liftingsurface.LiftingSurface attribute)

O

 	

 	ObjectsExtents() (in module airconics.AirCONICStools)

P

 	

 	PlanarSurf() (in module airconics.AirCONICStools)

 	point_array_to_TColgp_PntArrayType() (in module airconics.AirCONICStools)

 	points (airconics.primitives.Airfoil attribute)

 	points_from_intersection() (in module airconics.AirCONICStools)

 	points_to_BezierCurve() (in module airconics.AirCONICStools)

 	

 	points_to_bspline() (in module airconics.AirCONICStools)

 	PrintComponents() (airconics.base.AirconicsShape method)

 	project_curve_to_plane() (in module airconics.AirCONICStools)

 	project_curve_to_surface() (in module airconics.AirCONICStools)

R

 	

 	RemoveComponent() (airconics.base.AirconicsShape method)

 	rotate() (in module airconics.AirCONICStools)

 	

 	RotateComponents() (airconics.base.AirconicsShape method)

S

 	

 	scale_uniformal() (in module airconics.AirCONICStools)

 	ScaleComponents_Uniformal() (airconics.base.AirconicsShape method)

 	ScaleFactor (airconics.liftingsurface.LiftingSurface attribute)

 	

 	Sections (airconics.liftingsurface.LiftingSurface attribute)

 	SplitShapeFromProjection() (in module airconics.AirCONICStools)

 	SweepFunct (airconics.liftingsurface.LiftingSurface attribute)

T

 	

 	Topology (class in airconics.topology)

 	transform_nonuniformal() (in module airconics.AirCONICStools)

 	TransformComponents_Nonuniformal() (airconics.base.AirconicsShape method)

 	TransformOML() (airconics.fuselage_oml.Fuselage method)

 	

 	translate_topods_from_vector() (in module airconics.AirCONICStools)

 	TranslateComponents() (airconics.base.AirconicsShape method)

 	TrimShapebyPlane() (in module airconics.AirCONICStools)

 	TwistFunct (airconics.liftingsurface.LiftingSurface attribute)

U

 	

 	Uniform_Points_on_Curve() (in module airconics.AirCONICStools)

W

 	

 	WindowContour() (airconics.fuselage_oml.Fuselage method)

 	

 	Write() (airconics.base.AirconicsBase method)

 	

 	(airconics.base.AirconicsCollection method)

 	(airconics.base.AirconicsShape method)

 Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

 _images/Proteus.jpg

_images/notebook_examples_32_1.png

_static/plus.png

_images/Airfoil.png

_static/comment-close.png

_images/thunderbolt.jpg

_static/comment.png

_images/notebook_examples_34_1.png
TPfinbbd wing wing powerplant
i
Podfail boom
L
outbd wing | | Fin (up) | | Fin (down)

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		airconics documentation »

 All modules for which code is available

		airconics.AirCONICStools

		airconics.base

		airconics.engine

		airconics.examples.boxwing

		airconics.examples.tailplane_example_transonic_airliner

		airconics.examples.wing_example_transonic_airliner

		airconics.fuselage_oml

		airconics.liftingsurface

		airconics.primitives

		airconics.topology

 © Copyright 2016, Paul Chambers, Andras Sobester.
 Created using Sphinx 1.3.5.

_images/notebook_examples_26_1.png

_images/Engine.png

_images/Fin_Tailplane.png

_images/notebook_examples_30_1.png

_images/Wing.png

_images/cover.png

_images/Airliner.png

_images/predator.jpg

_images/Fuselage.png

